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SUMMARY

This paper deals with the problem ‘of selecting all good normal regression
models using the parametric empirical Bayes approach. The average of k
linear loss functions is used as the loss function for the selection problem,
where k is the number of regression models under consideration for the
selection problem. Mimicking the behaviour of a Bayes selection rule, an
empirical Bayes selection rule is constructed. Also, the corresponding
asymptotic optimality is investigated. It is shown that under certain
conditions on the independent variables of the regression models, the regret
risk of the proposed empirical Bayes selection rule converges to 0 with a
rate of order k™.

Key words : Asymptotic optimality, Bayes selection rule, Empirical
Bayes, Good population, Normal regression model, Rate of convergence.

1. Introduction

Consider k  independent normal populations 1tl=N(61,02 ),
e Ty = N(6, 6%) with unknown means 6, ..., 6 and a common unknown

variance o For a given control value 8,, population T; is said to be good if
8, > 6y, and bad otherwise. The problem of selecting all good normal

populations has been extensively studied in the literature. To mention some
earlier papers, Paulson [8] and Gupta and Sobel [5] have studied problems of
selecting a subset containing all good populations using some natural selection
rules. Randles and Hollander [10], Miescke [7] and Gupta and Miescke [2]
have derived optimal selection rules via the D-minimax and minimax
approaches. Huang [6] has derived Bayes selection rules to partition normal
populations with respect to a control. The reader is referred to Gupta and
Panchapakesan ([3], [4]) for an overview on this research area. The paper, aims
at deriving selection rules for selecting all good normal populations via the
parametric empirical Bayes approach.

1 This research was supported. in part by NSF Grant DMS-8923071 at Purdue
University.
2 Wayne State University, Detroit, MI 48202
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LetQ=(6 =(8,,...,8)10; € R,i=1,. k)betheparameterspace
Let a=(a;,...;a) be an action, where a —0 I, i=1,...,k. When action
a is taken, it means that population =; is selected as good 1f a;=1 and excluded

as bad if a;= 0. Consider the following loss function

(0,a) =

k :
2 L;(6,a,) - (L.1)

where, foreachi =1, . . ., k,
Li ( 65, ai) = g (90 - 91) I(_ o0, 90) (9.) +-(1 - ai) (9. - 90) I(eo, o0) (9‘)
1.2)

where Ig denotes the indicator function of the set S. In (1.2), the first term is
the loss of selecting m; as good while 8, < 6y, and the second term is the loss
of not selecting m; when m; is good.

For each i=1,...,k, let Y;;,...,Y;, be a sample of size m(m=22)
from population ;= N (8;, 6?). It is assumed that 8; is a realization of a random
variable ©;, which has a N( x’; B %) prior distribution, where

X = (X, . - ., X;,) is a known vector, B = (B,, -+ - Bp) is an unknown parameter
vector and the variance 72 is unknown. The random variables ©,, ..., 0, are
assumed to be mutually independent. Let Y=Y, ..., Y,

Y=(Y;,.... Y, ) and let & denote the sample space of Y A selecnon rule
d=(d,,.. dL) is a mapping defined on the sample space 7 such that for
each y € 2,d;(y) is the probability of selecting m; as a good population.

Under the preceding statistical model, the Bayes risk of the selection rule
d is
1 K .
R@)=1 Y R; () (1.3)
i=1

where

k
Ri@) =] ai(y)0o-0;(y, 0 TIE (y,)dy+c, (1.4)
Yey  ~ . ~ j=1" ~7 =~




SELECTING REGRESSION MODELS : BAYES APPROACH 337

and
Ci=E[(8,-85) g, ©)]
f; (y;)is the mafginally joint probability density of 2{ i= X Yim):
Gi(y) = EI6]1Y;=y;] = (-@F+axiP = v G)is thepos

m
. . — 1 0'2 C)'2 2
terior mean of ©; given Y; =Y where y; = Py -z, yjjand o = poy / [—n;-'- T
. )=
Hence, a Bayes selection rule dg = (dg;, - - - , dgy ), which minimizes the
Bayes risks among all sclect'ion rules, is given as follows :

Foreachy € Yandeachi =1, ...,k

‘ _ U ifwGy) 2 6
doi (3') - { 0 otherwise
_{1 ify; > [6p — ax’;B1/(1-0) 1.5)
0 otherwise

From (1.5), one can see that for each component i, the Bayes' selection
rule dg; is mdependent of yj, j#1i, and depends on y; only through the sample

mean value y;» and is non- 1-decreasing in y;. Henc€ it can also be written as
dg; (¥;)- The minimum Bayes risk is :

k
RUQ) = ¢ & Ri(g) (1.6)

i=1

where
R; (dg) = .[:o dgi ) [8—w; ) ) & () dy; + €~ (1.7)

and g;(y;) is the 'marginal probability density of the sample mean

m s

Y; = z Y;;. It is known that marginally, Y follows the normal distribution
)— 1

(rotr)
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2. Empirical Bayes Selection Rule

It should be noted that the Bayes selection rule d; strongly depends on
v; (¥}, i = 1, .., k, which are also dependent on parameters B and o. Since
these parameters are unknown, the Bayes selection rule - aG cannot be

implemented for the selection problem at hand. In the following, the empirical
Bayes approach is applied. First construct estimators for the unknown parameters
B and a. Then, by mimicking the behaviour of the Bayes selection rule dg,

an empirical Bayes selection rule, say d*, is derived. The performance of the
empirical Bayes selection rule d* will be evaluated in the next section.

Foreachi=1,...,k letx()=(x},...,X_ |, Xy ..., % ). Itis assumed
that k>p and for each i=1,...,kx(i) has rank p. Let

_ 2
P (@)=xG) (x () x () ' x (i). Note that marginally Y, _ N B,%H? ),
j=1,...,k, and ?,, e ,?k are  mutually indépendent. Let

Y'(i)= ..., Y,_ 1> Yisp ..+, Y, ). Under the normal regression model, for
each i=1,...,k, the maximal likelihood estimator of B based on Y() is :

B=6®x O x DTG @

2 2
. o K¢
Next, construct estimator for a=—m / (—; + TZJ. For each j=1,...,k,

m .
et  W;= E (Y- ?j)z and W= Z W;.  Since for  each

1=1 j=1

Wi 2 i ..
j=1,...,k,—21~x(m—1) and  W,,..., W, are iid, therefore,

g .

w )(2 (k(m-1)) and v is an unbiased estimator of 0—2. Let
ot~ mk (m—1) m

Vi=Y ) (0, _, -P@)) Y G). It is known that

2 2 !
Vi/(%+12] ~X (k=1-p) and therefore, V,/(k—1-p) is an unbiased

2

. c L .

estimator of —+72. Hence, it is natural to wuse the ratio
m :

w__ [V
mk(m-1) (k-1-
possible that the value of the ratio is greater than one. Hence, estimate o by

as an estimator of o. However, when o<1, it is

K
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A . Vi .

o (i) = min mk(\rz ) / ( “1-p ), l). Then es}timatel the pqstenor mean

¥ =1 -0)y+ax; Bby |
\vl(_)— ll—a(l)ly,+a(1)x Q(n) (2.2)

Now, by mimicking the behaviour of the Bayes selection rule dg, we

propose an empirical Bayes selection rule d” = (d} ..., dg ) as follows : For
each i=1,...,k and ye 2. ' '
| ." 1 ify () 2 6 ' '
d = 1l 2.3
' (3/ ) {0 otherwise ‘ ' @3)

Note that the empirical Bayes selection rule d' depends on y only through
Yir (1(1) and. B(l) where the latter two are functions of W, V; and Y(l) For

fixed Q (i) and B(l) d; is non decreasmg in y;. Let P; denote the probability
- measure generated by W, V; and Y(,), and let E; denote the expectatmn taken
with respect to the probability measure P;. Note that W, V;, Y (i) and Y; are
mutually independent. Based on the preceding reasoning, the Empmcal Bayes
selection rule g‘ can be presented as : :

Foreachi=1,...,k

1if ;53 28

2.4
0 otherwise 24

d;‘(‘;l&(i),ﬁ(i))={

The Bayes risk of the empirical Bayes selection rule d* can be written as:

k
R@") = % Y R @) (2.5)

Ci=1

where

R;(d) = Ei[.r;=_°°_di'(_i|&(i)v_:B(i))[eo_WiGi)]gi@i)dyi}"'ci '

1l
T3
8

LRl 1A B@)=1)16-v;G)1 g F)di+C;

(2.6)




JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATIST, ICs

3. Asympiotic Optimality
Let d be any selection rule and R (d ) the corresponding Bayes risk. Since
dg is the Bayes selection rule D;(d,) = R;(d)-R,(dg;) 20 for each
k

i=1,....k Hence, D(@)=R @) -R(dg)=1 3" D;(d) = 0.D (@) s called
i=1

the regret risk of the selection rule d. The regret risk D (d) is always used as

a measure of performance of the selecnon rule d

Definition 3.1. A selection rule d is said to be asymptotically optimal of
order {g } if D (d) = 0 (g,) where (ek) is a sequence of positive numbers such

that Lim ¢, = 0.
k— oo

In the following the asymptotic optimality of the empirical Bayes selection
rule d is studied. For this purpose, it is assumed that Condition C holds,

p
Condition C (1) E x,-zj < M for all i where M is a positive value
j=1
independent of k;

()] %x x’ converges to a positive definite matrix A as k tends to infinity.

Now, the regret risk of the empirical Bayes selection rule d* is

k
D (d" =%E D; (d) - 3.1)

where
D) =E[ (6 GIE0D.F0) -t G 110-v6)18 G5,
| 62

In the followmg, without loss of generality, it is assumed that

_xﬁ

By the definitions of dg; and d;, we obtain that

4 G;1a 6.8 ®) - dg; G)1106-v; 5) 1 8; G o,
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Sz ieo“l’i@i)]l[&(i) < land ;@) 2 Oo]g;(yi)dii
[T B wEIIA® = 100w, G) > 0015, G) 45,
ol w;(‘i)~eom<§(i),<1andw;<?i) <0,)8 G4,
I WG - el 1EG = 1 and §,6) < )5 G5,

I + I + I + TV, (say) : : (3.3)

where a, = (Bp—0ax; B)/(1-0). Note that a;<x’; p. Note that
8o=V; @) 20 as y; < a; and y; (¥;) — 65> 0 as y; > a;. Hence,

4

E s [

< M, exp { _km-1) (n12— ] [_IZ_aa —In [l + lz—aa]]}

o 57

<oK'y " (3.4)

where, the second inequality is obtained from Lemmas A2(c) and A3(a).

. 0o-v; 5] &G Ay, E[1(@@) =1)]

Similarly
E,[IV)) < I: [V, G) - 8] G dF,E 1@ D =1)]

< 0K ' (3.5)

Next, consider

E;[I;] = J‘_l [Bo-v G lg @) P; (. () <1 and ¥; 5;) > 65} 4 3

For y; < a;, by the definition of \'j\;i (y;), we have

P (@) < 1and §; 3) > 6o}
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=P, {a@)<1 and
@6 - @) (; B-F)+ 8 (5B D -x;B) > 8-, ) )
80— ; (y)
2
8o - v; &)
2

< Pi{&(i) <1 and (@() - @) (5 B-¥i)>
+P; {0 (@)<1 and &(i)(}’;ﬁ(i)‘}'iﬁ)> ’

ByLemméA4(a),
8, - (V.
I < Pa{}’; M - x;B >.°_‘;"_ ‘Y)}

V2b? 6 —v; G;)
SV @o-viG) P T oy

where b;=x’; (x @) x" ()™ x;and v = o 7~

Also,
E[II] = I;a Iv; ) - 001 G)P; (i) <1 and ;5 <6} Y;
For y; > a;, by the definition of \’j}i (y;), we have

Pi{a@) <1 and % F) < 8 )

. R _ 0o —V; (y;
SP{&@ <1 and (&®-0) (x;B-¥)< = \;;@))
e

= HI“ + IIIIZ (3.8)

+ P8 @M<1 and &6 (x; PO - 5 B) <

By Lemma A.4(b),

0 — - (V.
11, < Pi{}’LB @ - x;B < —"—;"—(—‘)}

V2b.v? _ v;(y) - 90)2
2

= T v -65) P 8boy

1

] . 3G9
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Combining the preceding results yields that
E[L+11L] €A +A+A; (10

where
A1=J-;=_°°[90_\Vi O 1g OGP @@ < 1»(&@)‘(")(}'19—?9
8-V ) . _
S _O_lz"_Y_ } d;
r= T G -e18GIR GO < LEAO-OEP-)

8-V G) . _
< 0 ;"1 Yi )dyi
and
° V2bv” 6y —v; &) 2 _
A - "-?;=~°° ) ;]"'n €xXp.1~ 80, 2 g (yp) dy;

By noting that ?i _ N(x; B,v?) and by Lemma A.5,

Al o [ b ex ;B — 8
35 VN Ta-ar+dn, 0|27 (1 - af - 4b]
= 0" (3.11)

Therefore, i_t suffices to consider the asymptotic behaviour of A; and
A,.
o . 8- B-xif 1-
For y.<a;, c(y;)= - — = —=—=—+
Vi<ae O 2B-Y) 2B-¥i) 2
y;» since 8y < _’f'ig- Thus, for y; < a;, ¢ (y;)>c(a;))=0, and by Lemma Al,

O .
is decreasing in

IN

Pi-{&(i)—a>c()7i) }
exp{— EL‘BL_Q b, (c@i),ia.)}+exp {-—k—_—;—:p-hz(é@i)»a)}

IN

2

(3.12)
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where

_f (e =g —n[E
by (e a)=5- ln(1+2a]and by (& 0= -3 ln(2(a+c)]

By substituting (3.12) into A, and by Lemma A.7, we obtain

Alsfii_

L Bo-wiGDlg Gexp {- &Z—Q by (c(y), a )} dy;

T e N

=0k (3.13)

Finally, we need to take care of A,. Note that a; < x’; B since it is assumed
that 90 < X'i B ThUS,

x’iB A A -
Ay = J;' “ v ) -8l g; @i)Pi{“(i)<lv(a(i)‘a)(}'iﬂ—)’i)

o Gi)} &,
2
+jfﬂwx1r-%1&@93{&m<1x&m—ax§p—%)

2
= Ay +Ay ~ G149

Py 8- V; (_i)}dyi

For a;<y; <x’;B, 8,-v; (¥) <0, and

80— v; (v) }

Pi{&(i)<1,(&(i)—a)(}’i§—?.~) </

<P{a-a<cF))

= 0ifa+c(y;)<0
So, in the following, consider only those y; € (3;, x’; B) such that
: L - _axB+6, _
a+c(y;) >0, which is equivalent to that yg-ﬁ,s e;. Note "that

a;<ej<x’;B. For Y, e (a;¢;), by Lemma A.2, we have
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e )

Pi{&(i)< L@W-0&; -7 < °—2—}

<SP {a-a<c@)) © (3.15)

Séxp{ k(m )h (c(_) a)}+exp{—k;;-_—ﬂh2(c@i),a)}

Replacing the inequality of (3.15) into A,;, and by Lemma A.8(a), (b),
we obtain: :

A, =0k (3.16)

. N _ 80— ¥; (y;

<P {a@-a>cF))
=0ifa+c(y)>1

So, consider only those y;>x’;B such that 0 <c(y;) <1—«, which is
X'B-6p
1-a

equivalent to that y; > +x;B=c; Hence, by Lemma A.2, we have

A A - B — i(_j)
Pi{a(i) <L (EM-0)&;B-F;) < %}
<P (&(i)-a<é(§i))

_Sexp{ k(m2 )h (c @y, a)}+exp{—k;;:p-hz(c(?i),a)}

3.1
Replacing (3.17) into A,,, by Lemma A.8(c), (d), we obtain

Ayp=0k" (3.18)
The preceding discussions and results are summarised as a theorem as
follows.

Theorem 3.1. For the normal regression ’ﬂ.lodels, it is assumed that
Condition C holds. Then, the empirical Bayes selection rule d” is asymptotically

optimal and D(d") = O(k™ ") as k — e
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4. Appendices

Certain results which are useful to study the asymptotic opnmahty of the
empirical Bayes selection rule d are presented.

Lemma A.1. (a) For a standard normal random variable Z and ¢ > 0,

1 ¢
P{Z2c )SVM_C-CXP(_ 2]
(b) For a random variable S _ X* (n), we have
S n
P(;—ls c]Sexp[—i(c—ln(l+c)))for—l<c <0
and
S n
P[E—lZCJSexp(—E(c—ln(l+c))Jforc>0

Note: Part (a) is from Appendix B of Pollard {9] and part (b) is from Corollary
4.1 of Gupta, Liang and Rau [1]_.

Lemma A.2. For the random variable 0. (i) defined previously, we have
@  P{a@-a>c)

=0 ifc>l-a _
Sexp{—Mhl(c,a)}+exp{ —ha(c,a)} if0<c<l-a

2
c [
h; (c,a) = 2 —In (l + 2(1)

hz (C, (1) =-

where

and

€ fio—=
Aa+c) O 2Aa+c¢)
®  P{a-oa<c)

=0 ifcs-a

< exp {—@h,(e,a)}+exp{—k_+p-hz(c,a)} if-a<c<0
©~ P{a@®=1)=P{a@-a=1-0)

P{a@-a>1-0a)

IN
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Proof. By the definition of & (i) and by an application of Lemma A.1(b),
straightforward computation will lead the results.

Lemma A.3. Under Condition C(1), we have

(a) 0 < I;__w 6o —v; o)1 g () dy; <M, and

(b) 0< J~°_° [w; ) — 601 g; dy; <M

for all i=1,...,k, where M, is independent of k. !
Proof. Straightforward computation will yield the results. Hence the details
are omitted.

Lemma A.4. For ¢ > 0, we have ’ !

A Vb ?
@ PO - xip>c) < phoewi- 2t():iv2

wheré b;=x; (x () x' (i) y! x; and V2 = % +1°

Vo~ [ c2]
exp {-

2nc 2,y

(b) Pi{l(’ifi(i)—l('ig<—c}s

Proof. ThlS is a direct application of Lemma A.l(a) by noting that
A 2
X B @) - x;B ~ N, by).

\

Lemma A.5. Under Condition C, for sufﬁcienﬂy large k, |

. ' [

. Ny -1 MZ - : . i
x;(x@)x () xiSTforsomeM2>0foreach1= L....k

where M, is independent of k.

Proof. Note that x x’ = x (i) x" (i) + x;x";. Hence,
/

lxx = —x(n)x G+

—l-x-x’
k22 T k-~ tx 5k

where under Condition C(1), ixi-x’i —> 0 uniformly for each i=1,...,k.

\
Therefore, by Condition C(2), ix(i) x’ (i) converges to A for each i
|
[
|
|
\
|
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~1.
i=1,...,k Also, since (% x (i) x’ (i)] & X [@)x’ (i)_.] =1,
k(x@)x @))! converges to A™' for: every i=1,...,k, and
Xk (x () x' () )" x; converges, ask —— oo, to x; A”" x;, which are bounded
uniformly  for all i=1,.:.,k, under Condition C(1). That is,
0<x;A™ ' x;sM,/2 for all i=1,... k. Therefore, for sufficiently large k,

X aOX O %= ¢ Kk&OK O x]

IA

2, .-
XA

M
< 2
k

Lemma A.6. (a) For 0<t; <t,<w,and n>0

I‘z xexp{-n[x—In(1+x)]}dx=0@ ")
t

1

(b) For 0<t; < ty<1 and n>0

J'lz xexp {n{x+ln(1-x)]}dx=0@")
t

Proof. The result can be obtamed through direct computation. The detail
is omitted here.

For —e <t; <t, <a;, define

Y . : = _
By (t),t,k) = .[ [60—wi (v) 1 g (v)) exp {— w h, (c @i)’a)} dy;

1
J"z k-1-p _
B, (t), 1), k) =  Bo-wi v lg exp §- 5 hp e (y), )y dy;
| .
Then, the following results are obtained.
Lemma A.7.

k(m-1) 1- if
@ By (-o,2,k) = Ofexp 75— hy G 00 o

o™ Y
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(b) B, (-w,a,k) = 0fexp 7 5 @) .5,'9 0
ok if X'; B~ 6> 0

0 - -
Proof. (a) As X B 90—0c(“)— = [;-lg +12a=lv2°" for

— 1-Q
y; < a;. Thus, hl(c(yl) a)=nh [— a]———-—ln( ™ J>O.

Hence,

R

Sii]CC 0 S I-lw [90 -V; @I) 1 8i @I) dyl S 90 <o

When k’iB - 8 > 0, define

9y if6y<a;

aj = xiB-g xiB-09 -
a, — (|: }'i-ﬁ'—eo :|+1J _(1 —-(X,) if a; < 90

where [y] denotes the greatest integer not larger than y. Then,
B, (0,2, K)=B, (~w0,a’,K) + B, @}, 3, k) - (A

Since c(y;) is decreasing in y,c() = c(@)) for ;< a. Thus
h, (c (y;), @) = h; (c(a;), @) > 0. Therefore,

B, (- ,a},k) _ -

< exp{ k(mz D) h, (c (a) (1)} Jlfiw leo—wi(?i)]gi(_i)d?;

= O(exp{ k(mz Km-Dy @), a)}} | (A2)
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@) 6o-Vi () 8- x’; B R
" Letz= 2()= o 4a(xB y) 4a(xB y) i . Note that
x’; B)

4o (x (~’i§ -—i)2

z is decreasing in ; for y; < a; and dz (y)) = dy,. Straightforward

computation yields that

B, (a a., k)

52 p

_Jw, 160’ (x; B -y’ 8 G)
h a.. (_)’(’i ? - 9())

exp {_ w h, (c @), a)} d2G)  (A3)

z(y;)

_ 2
Since  Y;-x;B ~ NEO,%+TZ 160” (x';B~¥, ) g; ) < ¢ for
some positive value ¢, or any "y, When 6p<a;<x;B, for

Bp = 3 < ¥;<g;, 0<

X’ B * -
o 6 < 1. When &;<6,<x’;B, for aj < ¥, <

, we have
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Plugging the preceding results into (A.3), we obtain

SI::'Clalz(?i) exp{ k(m2 1 h (c (¥), a)}d(—z(',))

Si

z(n:)
=c; 0 IZ() zexp{ k(m )[z—ln(1+z)]}

o™ (A.5)
by Lemma A.6(a) and by noting that 0=z (a;) <z (a]) < o.
Combining (A.1), (A.2) and (A.5), it is concluded that
B, (-@,2,k)=0(K")
Therefore, the proof of part (a) is compiete.

Following an argument analogous to that of part (a) and by an application
of the inequality of Lemma A.6(b), the result of part (b) can also be obtained.
The detail is omitted here.

Note : By (A.4), we see that c(a )and z (a ) are constants, mdependent of i.

Therefore, the rate of covergence reported in Lemma A7 holds umfomlly for
alli=1,...,k

For a; <t; < t, < o, define

Y | - ' _
B3 (tl’ tZ’ k) = J; [\V, (_l) - 60] gi Gl) exXp {"‘ k(m2 1) h] (C (—i)" o )} dy,
1 . A

b _ ‘ 1= _
By (. 1. k) = '[1 [w; (v)) - 8o g; () exp {- k—";_p‘ h, (c (), @ )} dy;
. 1

Similar to Lemma A.7, one can obtéin the following results:

8y + X x;B-86
Lemma A.8. For ¢;= »O—HZ—LE' .G = ='T’@_.—ao-+ x'; B

, ] km-1) f(1-a e R A
() B; (a;, €5, k) = OLEXP{ 2 hl( 2 aj}] il ?0_0
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Olex ——'Eh —, ifx.B<6,=0
B, (a;, ¢, k) = _?{ 2 2[ 2 ]} XiB=%
: (0] ) if}’ig—e())()
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3 i = -
' oY) ifx';B - 0,50
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